
 
Optimizing Performance of Superscalar Codes For a Single  

Cray X1 MSP processor  
 

Hongzhang Shan, Erich Strohmaier, Lenoid Oliker 
 

Future Technology Group/Computational Research Center 
Lawrence Berkeley Research Laboratory 

One Cyclotron Road 
Berkeley, CA 94720 

 
{hshan, estrohmaier, loliker@lbl.gov} 

 
Abstract 

 
The growing gap between sustained and peak performance for full-scale complex scientific 

applications on conventional supercomputers is a major concern in high performance computing.  The 
recently-released vector-based Cray X1 offers to bridge this gap for many demanding scientific 
applications.  However, this unique architecture contains both data caches and multi-streaming processing 
units, and the optimal programming methodology is still under investigation. In this paper we investigate 
Cray X1 code optimization for a suite of computational kernels originally designed for superscalar 
processors.  For our study, we select four applications from the SPLASH2 application suite (1-D FFT, 
Radix, Ocean, and Nbody), two kernels from the NAS benchmark suite (3-D FFT and CG), and a matrix-
matrix multiplication kernel. Results show that for many cases, the addition of vectorization compiler 
directives results faster runtimes.  However, to achieve a significant performance improvement via 
increased vector length, it is often necessary to restructure the program at the source level – sometimes 
leading to algorithmic level transformations.  Additionally, memory bank conflicts may result in substantial 
performance losses.  These conflicts can often be exacerbated when optimizing code for increased vector 
lengths, and must be explicitly minimized.   Finally, we investigate the relationship of the X1 data caches 
on overall performance.   
 

1. Introduction 
 

The growing gap between sustained and peak performance for full-scale complex scientific 
applications on conventional supercomputers is a major concern in high performance computing. The 
problem will be exacerbated by the end of this decade, as mission-critical applications will have 
computational requirements that are at least two orders of magnitude larger than current levels. Superscalar 
architectures are unable to efficiently exploit the potentially large number of floating-point units that be can 
fabricated on a chip, due to the small granularity of their instructions and the correspondingly complex 
control structure necessary to support it.  Vector technology, on the other hand, provides an efficient 
approach for controlling a large amount of computational resources provided sufficient regularity in the 
computational structure can be discovered.  Vectors exploit these regularities in the computational structure 
to expedite uniform operations on independent data elements.    In this work, we examine the recently-
released Cray X1 vector architecture. The X1 is designed to combine traditional vector strengths with the 
generality and scalability features of superscalar cache-based parallel systems.  However, this unique 
architecture contains both data caches and multi-streaming processing units, making the choice of 
programming methodology a challenging question for application programmers. In this paper we 
investigate the Cray X1 code optimization for a diverse suite of computational kernels, originally designed 
for superscalar processors. 

 
The scientific high-performance computing community has accumulated a large body of numerical 

applications over the last decade specifically optimized for execution on superscalar-based processors. A 
critical question is whether these codes can achieve high-sustained performance on modern parallel vector 
architectures, and if so, how much programming effort is required.  The performance of several 



microbenchmarks, kernels, and applications on the X1 architecture has been recently reported [8,9,10]; 
however, the vector optimization strategies and the associated programming effort have not been examined 
in great detail.  Although vectorization techniques have previously been studied on previous generations of 
platforms [11,12], the lessons of yesterday do not necessarily apply to modern systems such as the X1.  For 
example, new compiler and microarchitectural technology obviates the need for manual implemented data 
chaining transformations.   More importantly, today’s vector systems are more complex, with deep memory 
hierarchies and multiple levels of parallelism.  Simply optimizing for maximum vector length without 
considering cache reuse – as was done in previous generations of vector architectures – may not be 
sufficient to optimize application performance on the X1.  Our study examines seven important scientific 
kernels with a broad spectrum of computational requirements and memory access patterns. 

 
The rest of the paper is organized as follows. Section 2 briefly describes the Cray X1 platform.  The 

scientific kernels are then presented in Section 3. The performance optimization process is discussed in 
Section 4 and a summary of the results is shown in Section 5. 

 
2. Cray X1 
 
The basic building block for Cray X1 is the multi-streaming processor (MSP), which consists of four 

identical single-stream processors (SSP). Each SSP has two 64-bit vector units and one 2-way superscalar 
unit.  The clock frequency for the vector units is 800MHz. Each vector unit is capable of one 64-bit 
floating-point add and one floating-point multiply operation each cycle. Thus the peak floating-point 
performance for a SSP is 3.2GFLOPs/s.  Each SSP has 32 vector registers holding 64 double-precision 
words, allowing up to 512 outstanding memory requests to hide latency. Additionally, all vector operations 
are performed under a bit mask, allowing loop blocks with conditionals to compute without the need for 
scatter/gather operations.  The scalar unit runs at 400MHz with two 16KB caches (instruction cache and 
data cache).   
 

The four SSPs inside a MSP share a 2-way set associative 2MB data cache, a unique feature for vector 
architectures.  The cache is needed because the memory bandwidth is not large enough to saturate the 
vector units. The peak memory bandwidth is 34.1 GB/s (i.e. 2.7 Bytes/Flop) while the cache bandwidth is 
much higher at 51.2GB/s. The cache here, as in superscalar systems, is mainly designed to exploit the 
temporal locality of scientific applications.  An X1 node consists of four MSPs sharing a flat memory 
through 16 memory controllers (Mchips). Each Mchip is attached to a local memory bank (Mbank), for an 
aggregate of 200GB/s node bandwidth. To build large configurations, a modified 2D torus interconnect is 
implemented via specialized routing chips.  Finally, the X1 is a globally addressable architecture, with 
specialized hardware support that allows processors to directly read/write remote memory address in an 
efficient way.  

 
The X1 programming model is designed to hierarchically leverage parallelism. At the SSP level, vector 

instructions allow a large number of SIMD operations to execute in a pipeline fashion, thereby tolerating 
memory latency and allowing for high-sustained performance. MSP parallelism is achieved by distributing 
loop iterations across each of the four SSPs. The compiler must therefore generate both vectorizing and 
multistreaming instructions to effectively utilize the X1.  

 
3. Applications 
 
We select seven applications for our study, which are well tuned for execution on cache-based 

superscalar platforms. Four applications, 1-D FFT, Radix Sorting, Ocean, and Nbody are originally from 
the SPLASH2 suites. We rewrote them in the MPI programming model and tuned them on the Origin 2000 
platform [1,2].  The CG and 3-D FFT are obtained from NAS parallel benchmark suite v2.3 [3]. The last 
one is the commonly used dense matrix-matrix multiplication. 

 
NAS CG: is a solver for sparse linear systems using conjugate gradient method obtained from NAS 

parallel benchmark suite. The core operation is the sparse matrix vector multiplication. Its main memory 
operations are random access to a small data set and sequential access to a large data set at the same time.  



 
NAS FFT is a 3-D fast-Fourier transform partial differential equation benchmark also obtained from 

NAS parallel benchmark suite. The bulk of the computational work consist of a set of discrete multi-
dimensional FFTs, each accessing the same single large array multiple times, but with different strides each 
time.   

 
Ocean simulates eddy currents in an ocean basin. A cuboidal ocean basin is simulated, using a 

discretized quasi-geostropic circulation model. The principle data structures are about 25 two-dimensional 
arrays holding discretized values of various functions associated with the model's equations. These grids 
are partitioned among the processes into square-like subgrids. The equation solver used is a W-cycle 
multigrid solver that uses red-black Gauss-Seidel iterations at each level of the multigrid hierarchy. In order 
to compute the value for a grid points, it needs the data from all its nearest neighbors at that grid level. 

 
1-D FFT is a double precision complex 1-D version of the radix- n  six-step FFT algorithm 

described in [4], which is optimized to minimize the inter-process communications. The n-point data set is 
arranged in the form of a nn * matrix, and the matrix is partitioned among the processors in blocks of 

pn  continuous rows each. The whole FFT structure is as follows: (i) transpose matrix, (ii) perform 1-D 

FFTs individually on local rows of size n each, (iii) multiply the elements of the resulting complex 
matrix by the corresponded roots of unity, (iv) transpose matrix, (v) perform 1-D FFTs individually on 
local rows, (vi) transpose matrix. 

 
Nbody simulates the interaction of a system of bodies in three dimensions over a number of time steps, 

using a hierarchical N-body method. There are three main stages, building an oct-tree to represent the 
distribution of the bodies, browsing the oct-tree and calculating the gravitational force, updating the body 
positions and velocities. At the beginning of each time step, a process has to exchange information with 
other processes to build the tree. Then it will browse the tree from the top for each body and compute the 
gravitational force along the path. The data accesses are scattered and involve many pointer-chasing 
operations. Force calculation is the most time-consuming stage.  

 
Radix sorts a series of integer keys in ascending order using the radix algorithm. The radix size used 

determines the number of iterations. For each iteration, it computes the histograms first and then moves the 
keys according to the histograms. There are two main arrays working as source and destination 
alternatively. The source data are read sequentially while the destination data are written scattered.  

 
Matrix-Matrix Multiplication (MM) computes the product of two matrices, which is a very common 

basic operation in scientific computations.  
 
4. Performance 

 
This section examined X1 performance in MSP mode. The data set sizes for NAS CG, NAS FFT, 

Ocean, Nbody, 1-D FFT, Radix, and MM are class B, class C, 2050*2050 matrices, 2 million bodies, 16 
million data points, 256 million integers, and 2048*2048 matrices respectively. The performances of the 
original version and optimized version are shown in Fig. 1. Note that the original versions are currently 
being used on  platforms with superscalar processors. We first examine whether all the loops in the original 
version can be properly vectorized and multi-streamed by the vector compiler automatically. If the 
compiler cannot identify the data independence between iterations, compiler directives are added where 
suitable to inform the compiler the code region is data independent.  The version with the proper compiler 
directives is referred to as the directed version.  For most of the experiments, simply adding compiler 
directives is not sufficient to deliver the optimal performance – since the compiler is unable to effectively 
exploit all of the available data-parallelism within the loops or functions. We therefore have to explicitly 
change the algorithms or data structures in order to assist the compiler in identifying data-parallel regions. 
The restructured code is called the optimized version.  
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Fig. 1: The Performance of the Original, Directed, and Optimized Versions. The Y-

axis is in Log-scale. 

 
4.1 Effect of Using Compiler Directives 
 
The compiler needs to make conservative assumptions about possible data dependencies to avoid 

potential race conditions. Compiler directives are therefore often necessary to allow for the effective 
vectorization and multistreaming of data independent regions. Figure 1 shows that compiler directives had 
almost no effect on the performance of CG and Radix.  For CG, the main time-consuming component is the 
loops to compute the sparse-matrix vector multiplication. Here, the compiler was able to identify the data 
independence between iterations and vectorize and multistream the loops automatically. Therefore, the 
original version and the directed version deliver similar performance. The compiler directives have no 
effect on performance of radix either. Unlike CG, data dependencies within the loop iterations are 
preventing vectorization and multistreaming; causing the code to run on the scalar units. In other cases, the 
compiler directives can substantially improve the performance. For ocean, 1-D FFT, NAS FFT, and MM, 
the important loops can be both vectorized and multi-streamed. However, for Nbody, the loop can be 
multistreamed but not vectorized due to its code irregularity and complexity. 
 
 

4.2 Application Restructuring and Performance Optimization 
 
Adding compiler directives can exploit the data parallelism within the loops. However, in order to 

exploit the data parallelism across the loops or functions, the programs have to be restructured to generate 
more efficient execution codes. The average vector lengths of the directed version for NAS CG, ocean, 
NAS FFT, 1-D FFT, Radix, MM, and Nbody are 46.38, 63.15, 16.70, 9.8, 1, 3.71, and 64 respectively. For 
CG, further increase the average vector length without increasing data set sizes is difficult. The indirect 
memory access limits its performance. However, its performance can be improved about 10% if the inner 
loop is unrolled eight times explicitly (the optimized version).  For Ocean, the average vector length has 
almost reached vector register length of 64 and no further optimization was necessary.  We focus on 
increasing the vector length of other applications. For MM, we found that a naïve implementation using the 
stride access that will be intentionally avoided on superscalar processors delivers the best results on Cray 
X1. 

 
NAS FFT There are two important implementation parameters in the NAS FFT, fftblock and 

transblock.  The first parameter controls how many ffts are done at a time. The second parameter is the 
blocking factor for the transpose. The default values are 16 and 32 respectively, which are appropriate for 
most superscalar machines to maximize cache reuse. As suggested in the code, on the vector machines, the 
block size should be as large as possible, i.e. 256 for class B. The result using longer vectors is shown in 
Table 1 labeled as Vec-full. It only takes half of the time needed by the directed version. In the NPB 2.4 
version, in order to reduce the amount of the memory required by the program, the time evolution array is 
no longer stored for all time steps but just for the first. With this efficient memory usage, the performance 



is further improved to 56.38 seconds as shown in Table 1. However, we find that if we set the fftblock and 
transblock value to 64 instead of 256, the running time becomes even shorter. The best running time we 
obtained is 43.14 seconds. By examining the hardware performance counters, we found that when the block 
size is 256, both the cache misses (E:2:0) and total requests to local memory (M:0:0) are two or three times 
higher than those when the block size is 64. This is related with the cache design. When the block size 
equals 64, all the data needed for the 64 ffts fits in the cache; when the block size becomes 256, the 2MB 
cache cannot hold all the data for these 256 ffts and causes more cache misses. Purely pursuing longer 
vector length without considering other factors may not lead to best performance results. 

 
Original Directed Vec-full No-evolve Optimized 

323 112 66.45 51.38 43.14 

Table 1: The Running Times for NAS FFT (seconds). 

 
1-D FFT The data in the 1-D FFT is organized in the form of a matrix. The local ffts of rows or 

columns are done one at a time.  The average vector length for 16M double-complex data set is 9.8. Our 
first optimization is to perform the local ffts in a block manner as NAS FFT so that the ffts of 64 rows or 
columns can be done simultaneously. The average vector length now increases to 64. Surprisingly, the 
running time almost tripled from 20.4 seconds to about 70 seconds as shown in Table 2 labeled as Vec. One 
possible reason for the performance drop is the memory bank conflicts since the row length is a power of 
two. In order to verify our guess, we pad each row with additional space so that the row length is no longer 
a power of two. The padding result, labeled as optimized in Table 2, indicates that the memory bank 
conflict is indeed the reason for the performance loss. After vectorizing and padding, the optimized code 
now needs only 2.1 seconds for the whole run. Compared with the 20.4 seconds needed by the directed 
version, the running time now 10 time faster. We also find that the directed version can benefit significantly 
from padding: By simply padding the matrix for the directed version, the performance on the Cray X1 has 
been increased almost four fold (labeled as Padding). 

 
Original Directed Vec Padding Optimized 

213 20.4 69.8 5.8 2.1 

Table 2: The Running Times for 1-D FFT (seconds). 

 
Nbody Though in each time step of a simulation there are three phases, most of the running time is 

spent on the force calculation phase. More precisely, the running time is dominated by the loop to compute 
the forces. In this phase, each body traverses the oct-tree starting from the root. If the distance between the 
body and a visited node is large enough, the whole subtree rooted at it, will be approximated by that node. 
Otherwise, the body will visit all the children of the node, computing their effects individually and 
recursively. Therefore, the path through which a body traverses the oct-tree is dynamically decided and 
different from each other. Because of the complexity and irregularity of the loop body, we have not been 
able to reform the code to enable the compiler to vectorize this whole process. Multi-streaming the force 
calculation loop by compiler directives (the directed version) improves the performance of the original four 
times since all the four SSPs inside each MSP can now work simultaneously. 

 
Original Directed Optimized 

1600 388 326 

Table 3: The Running Times for Nbody (seconds). 

 
One way to optimize the code is to separate this process into two stages: finding all the nodes affecting 

the body first (browsing stage) and computing the force effects later (computing stage). In this way, we can 
easily vectorize the second stage and leave only the first stage not vectorized. The performance of the new 
version is shown in Table 3 labeled as optimized. The average vector length is increased from 3.71 to 
27.40. However, the performance improvement is limited only to 20% compared with the directed version. 
By further analysis we find that the browsing stage is very time consuming and dominates the tree 



traversing process. For example, using the optimized version, the combined time of these two stages within 
a one-step simulation for 2 million bodies is 130 seconds. By removing the computing stage, the run time is 
only reduced to approximate 120 seconds. The pointer-chasing operation on the Cray X1 platform is quite 
expensive, since several instructions are need to form each 64-bit address.  

 
Radix There are also three phases to sort the data using radix algorithm: browsing the local data to 

compute the local histogram, communicating among all the processors to compute global histogram, and 
reassigning the data based on the global histogram. However, none of these three phases in the directed 
version could be vectorized because of loop dependencies. For example, the code on the left side is used for 
the first phase to compute the local histogram stored in bucket: 

 
For (I = 0; I < N; I++) { 
 key_val = key_from[I] & bb; 
 key_val = key_val >> shift; 
 bucket[key_val]++; 
} 
 
 
 

For (j=0; j< VL; j++) { 
  For (I=0; I < N / VL; I++) { 
 key_val = key_from[j*N/VL+I] & bb; 
 key_val = key_val >> shift; 
 bucket_size[j*radix+key_val]++; 
  } 
}

N is the number of data. Key_from is the source data array.  Bb and shift are used to compute which 
buckets the data belongs to. Bucket is used to record the local histogram. The computation of the value for 
the bucket prevents the loop from parallelized for vector units or efficiently multi-streamed on the Cray X1. 
In order to optimize the code, we used the “virtual processor” concept described in [5]. Here, each element 
of the vector register is viewed as a virtual processor. Each virtual processor is then assigned a portion of 
the data and a set of independent buckets so that it can work exactly as a processor in the optimized 
version. The corresponding code for the first phase is shown above (right). 

 
 

Original Directed Vec-64 Optimized 
333.5 333.5 151.1 9.16 

Table 4: The Running Times for Radix  (seconds). 

 
VL is the number of virtual processors. The vector register size on Cray X1 is 64 elements and there 

are four SSPs in each MSP processor. Therefore, there are total 64*4 virtual processors available. The 
performance for the vectorized code is shown is Table 4 with label Vec-64. Now the average vector length 
changes from 1 to 64. But the performance only improved one time. The problem is also related to memory 
bank conflicts. Using 256 as the number of virtual processors causes significant memory bank conflicts and 
substantially hurts performance. Instead, if we use 63*4 as the number of virtual processors, the running 
time, labeled as optimized in Table 3, is almost 36 times better than the directed version. 

 
Matrix-Matrix Multiplication The original version we used is a blocked matrix multiplication. On 

the cache-based superscalar platforms, block algorithms are often exploited to achieve better reuse of data 
in local memory. We select 256 as default block size on Cray X1. The running time for two dense matrixes 
with 2048*2048 double elements is around 2.4 seconds. The average vector length is 64. Compared with 
non-blocked code, blocked code is usually much more difficult to develop and understand. It also 
introduces an artificial parameter, block size, that has nothing to do with the algorithm and has to be tuned 
on each specific platform. Therefore, we like to examine how the non-blocked code works on the Cray X1 
platform since it prefers longer vectors.  

 
 

Original Directed Uni-stride Optimized 
164.31 2.42 5.73 1.64 

Table 5: The Running Times for MM  (seconds). 



 
Suppose the matrix sizes for A and B are M*N and N*K respectively and the matrices are stored in 

one-dimensional arrays. There are two naïve ways to implement the matrix multiplication, stride and uni-
stride:  

 
Stride Implementation: 
For (i=0; i < M; i ++) { 
    For (j = 0; j < K; j++) { 
        tmp = 0;  
        For (k = 0; k < N; k++) { 
     tmp += a[i*N+k] * b[k*K+j]; 
        } 
        c[i*K+j] = tmp; 
    } 

        } 

 
Uni-stride Implementation: 
For (i=0; i < M; i ++) { 
     For (k = 0; k < N; k++) { 

   For (j = 0; j < K; j++) { 
   c[I*K+j] += a[i*N+k] * b[k*K+j]; 
    } 

      } 
} 

 
 

  
The main difference between these two implementations is the order of the second and third loop. Both 

versions can achieve the same average vector length 64 on the Cray X1. And we expect the uni-stride 
version to deliver better performance due to its stride-1 memory access. Surprisingly, the stride version 
(labeled as optimized in Table 5) performs at least two times better than the uni-stride version (labeled as 
uni-stride in Table 5) and also better than the blocked version. If we unroll the most outer loop four times, 
the stride version can deliver even slightly better performance than the vendor-provided dgemm function in 
the sci library. By the performance tools on the Cray X1 (PAT), we find that there are actually no vector 
load references with stride bigger than 2. The main difference between these two versions is the number of 
load/store references. The uni-stride version has M times more store references and eight time more load 
references since each time a c element has changed, it has to stored first and read back later. By examining 
the assembler code, we find that the characteristics of stride access have been changed due to vector 
processing. Fig. 2 illustrates this effect. 

 
In order to compute 0,0c , we need to load the first row of matrix A and the first column of matrix B. 

Accessing 0,0a ~ 1,0 −na is continuous access. However, visiting 0,0b ~ 1,0 −nb is stride accesses. Because of 

the vector effect, 0,0c ~ 1,0 −VLc are computed simultaneously. Therefore 0,ib ~ 1, −VLib should also be 
accessed at the same time. The result is that the stride access is replaced by continuous access. We only 
need to load matrix A and C one time unlike the uni-stride version where the matrix C has to be accessed 
many times. 

 
Figure 2. Memory Access for Stride Matrix-Matrix Multiplication. 

 
4.3 SSP vs. MSP 

 
On the Cray X1, each MSP processor contains four identical SSPs that share a 2-way set associative 

2MB cache. Programming in MSP mode is similar to developing codes on SMP-based platforms using the 
OpenMP model inside a SMP node and the MPI programming model across the nodes. But the compiler on 
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the Cray X1 can automatically distribute loop iterations across each of the four SSPs and generate either 
SMP or MSP executable codes from the same source code. It does not require the programmer to provide 
explicit OpenMP directives so the programmer can freely select either MSP mode or SSP mode based on 
the application characteristics to achieve better performance without modifying the source code. 
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Figure 3: The Performance Ratio of one MSP vs. 4 SSP. 

Fig. 3 presents the running time ratio of four SSP over one MSP using the optimized version we 
presented above. We find that for NAS-CG and radix, the SSP mode performs around 60% worse than the 
MSP mode. The main reason for the performance drop is that the SSP mode will increase the number of 
messages each processor has to process and reduce the size of each message. We expect further 
performance drop if more number of processors used. In other cases, its performance is better than that of 
the MSP.  

 
4.4 Caching Effect 
 
Compared with earlier vector architectures, the cache design is an innovative feature of Cray X1. 

Whether the cache has significantly effect on application performance on vector platforms is an interesting 
topic of study. On the Cray X1, each SSP has a 16KB scalar data cache (D-cache), while each MSP has a 
2MB instruction and data cache (E-cache) that is shared by the 4 SSPs. The general cache and local 
memory access times are about 1x, 2x, and 7x for D-cache, E-cache and local memory respectively [6]. The 
advisory compiler directives no_cache_alloc can block cache line allocation for the specified data. 
However, this directive works only on objects that are vectorized. Table 6 shows the effect of using this 
compiler directive on the optimized version. For matrix-matrix multiplication, since the 2MB E-cache is 
too small, there is almost no temporal reuse. Therefore, the cache should have no substantial effect on its 
performance. Actually, using the no_cache_alloc directive slightly improves its performance. For Nbody, 
its performance degrades a little but not significant. Most of the Nbody code is not vectorized and thus 
should not be affected much either. For other applications, the performance is slowed 20 ~ 80%. The peak 
memory bandwidth is 34.1 GB/s, i.e. 2.7 Bytes/flop while the cache bandwidth is increase by 50% to 
51.2GB/s. The cache is needed because the memory bandwidth is not large enough to saturate the vector 
units. Compared with the optimizations we have done above, such as increasing vector length and 
eliminating memory bank conflicts that may improve the performance dozens of times, the performance 
effect of cache is relatively smaller as we discussed in [7].  

  
 NAS-CG Ocean NAS-FFT 1-D FFT Radix MM Nbody 
Cache 246.00 2.06 43.14 2.07 9.16 1.64 326.42 
With 
no_cache_alloc 300.01 2.51 68.23 3.76 15.23 1.58 339.00 
Slowdown 1.22 1.22 1.58 1.82 1.66 0.96 1.04 

Table 6: The Cache Effect on Application Performance. The Slowdown is the Ratio of the Running 
Time with no_cache_alloc Directive vs. the Running Time without this Directive. 

 



Finally, we end this performance section by showing the achieved performance of these applications 
on Cray X1 in terms of Mflops/s/MSP (shown in Table 7), a popular performance metric for scientific 
applications.  The performance of radix is not displayed since it does not include floating-point operations. 
The peak performance of a MSP processor is 12.8Gflops/second.  The achieved percentages of the peak 
performance vary widely for these applications, ranging from the 1.59% of Nbody to the 81.73% of matrix 
multiplication. The possibility of further performance optimization will be examined in future work. 

  
 NAS-CG Ocean NAS-FFT 1-D FFT MM Nbody 
Mflops/s 582 2830 2133 1651 10461 204 
Percentage 4.55 22.11 16.66 12.90 81.73 1.59 

Table 7: The Achieved Performance in terms of Mflops/s and Their Percentage of the Peak. 

 
5. Summary 
 
The Cray X1 is an innovative new architecture combining traditional vector feature with modern 

superscalar components. However, determining the optimal programming approach is still under 
investigation.  In this work we examined seven important scientific kernels originally designed for 
superscalar platforms, with a broad spectrum of computational requirements and memory access patterns.  
Results show that the original unoptimized generally codes achieve low performance.  In many cases, the 
addition of compiler directives was sufficient to substantially improve runtime.  This was not true in some 
cases, however, where explicit application code restructuring was necessary to allow the compiler to 
effective exploit data-parallel code regions.  Additionally, data reuse strategies were also utilized to 
maximize the cache efficacy.  The code restructuring methodology was heavily dependent on the 
application details and largely ad hoc, maximizing vector length and cache reuse while avoiding bank 
conflicts. The overall performance effects of these optimizations were often quite substantial – leading to 
dramatic runtime improvements of 10X or even 100X over the original unmodified versions. 
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